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Abstract-A numerical model is developed for predicting steady-state ice formation inside a cooled two- 
dimensional channel. The study takes into account the strong interactions existing between the turbulent 
flow, the shape of the ice and the heat transfer at the ice-water interface which lead to the formation of 
wavy ice layers with one wave. The presented analysis is found to be able to predict realistic variations of 
the ice layer thickness for a wide range of Reynolds numbers and cooling parameters. The numerical results 
were verified by comparing the predicted ice layers with measurements and generally good agreement was 

found. 

1. INTRODUCTION 

ICE-FORMATION phenomena are observed in many 
diverse processes, such as the freezing of water in 
pipes, the blockage of chemical process lines and the 
freezing of liquid metals in heat exchangers. Many 
theoretical and experimental studies have been per- 
formed for fluid flow with solidification in circular 
tubes and parallel plate channels and its effect upon 
laminar flow heat transfer [l&4]. On the other hand, 
there are only a few studies which deal with the pre- 
diction of the solidified crust in the presence of a 
turbulent flow. In the treatment of solidification in 
turbulent flow it was assumed that the increase in ice 
layer thickness in flow direction is very small, so that, 
as a first approximation, it does not affect the flow 
characteristics [5-71. However, if the ice layer is not 
thin enough, there will be an interaction between the 
turbulent flow, the shape of the ice and the heat trans- 
fer at the ice-water interface. Under certain conditions 
these interactions result in an instability of the ice 
layer. This instability is caused by a strong lami- 
narization of the turbulent flow due to an acceleration 
of the liquid as a consequence of converging ice layers 
in the entrance region of the cooled test section which 
results in a wavy ice structure. The morphology of ice 
structure in a circular pipe was investigated exper- 
imentally by Gilpin [8, 91 and by Hirata and Mat- 
suzawa [lo]. 

The ice-structure in a cooled parallel plate channel 
was first studied by Seki et al. [l 11, but they inves- 
tigated only a small range of flow-rate Reynolds num- 
bers and cooling parameters. Because of this fact, 
wavy ice layers with only one wave could be observed 
in their experiments. Weigand and Beer [ 121 extended 

the experimental study done by Seki et al. [ll] and 
found that wavy ice layers with many waves occur 
also in a parallel plate channel for high values of the 
cooling ratio t$. In their experimental study, con- 
cerning the morphology of ice structure in a cooled 
two-dimensional channel, they observed that strong 
three-dimensional structures of the ice bands 
developed for very high values of the cooling par- 
ameter. 

The purpose of this paper is to present the results 
of an experimental and theoretical study concerning 
steady-state ice formation inside a cooled parallel 
plate channel. The focal point of the study is the 
presentation of a simple and quite flexible numerical 
model for predicting ice layers with one wave in the 
entrance region of the cooled channel. 

2. PHYSICAL MECHANISM 

Figure 1 shows the geometrical configuration and 
the coordinate system. The turbulent fluid flow enters 
the cooling section at x = 0 with a fully developed 
velocity profile and with constant temperature T,,. In 
the chill region the wall temperature is maintained at 
a constant value T,, which is lower than the freezing 
temperature TF of the fluid and a frozen layer is gen- 
erated at the cooled walls. 

Figure 2 shows a photograph of an ice layer with 
one wave for Re,,, = 36000, Pr = 13 and 9, = 8. The 
length of the channel is scaled in cm in Fig. 2 and the 
dimensionless quantities are defined as 

uo4h 
Re.,,, = ye, 

where I, denotes the axial mean velocity at the 
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NOMENCLATURE 

A -+ damping function 
N thermal diffusivity 
B dimensionless freezing parameter, 

O,kJk, 
F modified stream function 
/7 distance from centrelinc to the wall 
K acceleration parameter 
/i thermal conductivity 
L length of the chill region 
I mixing length 
i dimensionless mixing length, //6 

i: 
pressure 
dimensionless pressure gradient 

P7 Prandtl number 
Pr, turbulent Prdndtl number 
Re,, Reynolds number based on /7. U,,h/vL 

Rc,,, Reynolds number based on 4h,1,4/7/v, 
T temperature 
Tk freezing temperature of the liquid 
T,, constant inlet temperature of the 

liquid 
TN wall temperature 
u, 1 velocity components 
- tr’r’p, turbulent shear stress 
Go mean axial velocity at the inlet 
UT shear velocity, J([T,, IW/pL) 

s, I’ coordinates 
-L transition point 
.I’ + dimensionless distance from the wall, 

(~--Y)4lh. 

Greek symbols 
6 distance from centreline to the solid- 

liquid interface 
E”, eddy viscosity 
El, eddy diffusivity of heat 
0 dimensionless temperature. 

(T- Tt.)/(T,,- TF) 
0, cooling ratio, (T, - Tr)/( r, - T,) 
h, ‘i/8 constants 
\’ kinematic viscosity 
P density 
lb stream function. 

Subscripts 
S solid 
L liquid 
W at the wall 
0 at the entrance. 

Superscripts 
* - dimensionless quantities. 

/Tw'TF value of an acceleration parameter K, defined as 
TO 
PO lV"'i"""1 i 6(X) h vr dfi 1 d6 

FIG. I. Physical model and coordinate system 

entrance of the cooling section. The occurrence of one 
wave near the entrance of the test section can be 
explained as follows: during the growth of the ice 
layer the fluid undergoes a strong acceleration in the 
entrance section of the cooled channel. This accel- 
eration tends to laminarize the flow. A criterion for 
the retransition of the flow was given by Moretti and 
Kays [ 131. They found from experiments that a critical 

with Kc,,, > 2 x 10m6-3 x IO-‘, was sufficient to 
relaminarize an initially turbulent flow. For the ice 
layer shown in Fig. 2 values of K > 5 x 10m6 occur 
near the entrance of the test section. Because of the 
flow laminarization, the laminar sublayer at the wall 
increases in thickness and the heat transfer from the 
fluid to the solid crust diminishes. The thicker laminar 
sublayer is stabilized by the strong negative pressure 
gradient in axial direction. In a distance from the 
entrance the ice layers get nearly parallel and the accel- 
eration of the fluid, which is proportional to d6/dx, 
tends to zero. Therefore, the stabilizing pressure gradi- 

0 IO 
FIG. 2. ‘Smooth transition’ ice layer for Re,,, = 36000. 0, = 8 and Pr = 13. 
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FIG. 3. ‘Step transition’ ice formation for Re,,, = _ 39000. (IL = 10.4 and Pr = 13.2 

ent of the outer flow ceases and the fluid recedes to its 
originally turbulent state. The increase in heat transfer 
to the solid crust results in a decreasing ice layer 
thickness in this region. If  the preceding lami- 
narization of the fluid was moderate only, the flow 
passage expands gradually in flow direction (Fig. 2). 
This type of ice formation is known in literature as 
‘smooth transition’ ice formation. If  the lami- 
narization in the entrance region is more pronounced, 
the expansion of the flow passage leads to a flow 
separation in this region, which is due to the sharp 
increase of the cross-sectional area. This type of ice 
layer, which is depicted in Fig. 3. is designated as ‘step 
transition’ ice formation. After attaining minimum 
thickness, the ice layer grows monotonously again 
with increasing axial coordinate (Fig. 3). 

Following the study of Weigand and Beer [12]. 
wavy ice layers with one wave occur in a parallel plate 
channel for 

-0.41+ 2 < 0, < 2.4+ 2, Re,,, > 6000. 

(3) 

For a detailed description of the experimental appar- 
atus, the operating procedure and the morphology of 
ice structure, the reader is referred to refs. [ 12. 221. 

3. ANALYSIS 

3. I Basic equafions and asswnptior~s 
By assuming an incompressible, Newtonian fluid 

with constant fluid properties, the steady-state con- 
servation equations for the fluid are cast into non- 
dimensional form by using the following variables : 

s* = -2 
II’ .J 

.* = -!!(Re,,), 6* = ! * - f!!! 
1, ’ &IN - \IL 

u* = f, 
uo 

L+ = ;J(Re,,), /I* = A, Gf== ; 

This results in 

(4) 

where the eddy viscosity E,,,, which appears in equa- 
tions (6) and (8) is defined by 

&I 
-AlI’I” = PLL? F,, (9) 

By deriving equations (S)-(8), the usual boundary- 
layer assumptions were made. which are a common 
treatment of the conservation equations for channel 
flows [l4. 151. The boundary conditions belonging to 
the conservation equations are 

.Y* = 0 : II* = given, p* =p;, (I= I 

y* = cS*J(Re,,) : II* = P* = 0, 0 = 0. (IO) 

In addition to the boundary conditions, the con- 
servation of mass in integral form must be satisfied. 
By using the dimensionless quantities according to 
equation (4), the conservation of mass in integral form 
may be expressed in the following form : 
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s PJ(RC*h) 
u* dy* = ,/(Re,,). (‘1) 

0 

Furthermore, the energy equation for the solid 
region is required. By assuming constant properties 
in the solid phase and negligible axial conduction, the 
heat conduction equation for the solid region reduces 
to 

a2Ts o 
ay2 - 

(12) 

with the boundary conditions 

y=6: T, = TF 

y  = 11: T, = T,. (13) 

Equations (5)-( 11) and equations (12) and (13) 
are coupled by the interface energy equation, which 
adopts the following form for steady-state conditions : 

3.2. Temperature distribution in the solid region 
By using the boundary conditions according to 

equations (13), the temperature distribution in the 
solid phase is easily calculated from equation (12) 

T, = TWy~+T,‘~; y  2 6. (‘5) 

3.3. Velocity and temperature distribution in the liquid 
After introducing a stream function, defined as 

u*z-x v*=!!L 
ay* 7 ax* 

into equations (5)-(8) and by applying the coordinate 
transformation 

I = x* (17) 

to the conservation equations, the following set of 
partial differential equations can be obtained : 

aF a2F 1 da* a2F 
--T-- (18) a.f ap 6* dx ay 

aF de aFae 
,,-,,--kgF$. 1 (20) 

In equations (18)-(20) the modified stream function 

was used. The boundary conditions belonging to 
equations (18)-(20) are given by 

aF 
2 = 0 : 7 = given, 

ay 
p*=p;, O=l 

+O:%O, ,==I), 0~0 
ap 

j = ,/(Re,,) : $ = 
ae 

0, F = ,/(Re,M*, zT = 0. 

(22) 

The coordinate transformation according to equa- 
tion (17) is very useful in order to solve the con- 
servation equations, because the duct with variable 
distance between the wall and the centreline is trans- 
formed into a duct with constant height. 

The conservation of mass in integral form, given 
by equation (1 I), results in an additional boundary 
condition for the modified stream function Fat y = 
,/(Re,,), as it can be seen in equation (22). 

The energy balance at the solid-liquid interface 
equation (14), can be rewritten after inserting the 
temperature distribution in the solid phase 

do B ti* 
ay j=o=Jo l-6*’ (23) 

The dimensionless freezing parameter B, which was 
used in equation (23) is defined as 

k T,--T, k, 
B=L 

kLT,=T,=’ 

where k,/kL can be taken approximately as 4 for the 
temperature range of T,, and To under investigation. 

3.3.1. Turbulence modeling. By predicting the axial 
distribution of the ice layer thickness one of the major 
problems arises due to the modelling of the eddy vis- 
cosity E: in equations (18) and (20). For the fluid flow 
and heat transfer in a parallel plate channel containing 
a wavy ice layer with one wave, there are essentially 
three distinct regions. For small values of the axial 
coordinate (X < xtr, region 1) the flow undergoes a 
strong acceleration and flow laminarization can be 
observed (Fig. I). The flow behaviour in region III 
(X >> x,,) is approximately the same as that in a par- 
allel plate channel, because d8/d.r changes only 
slightly in this area. In region II both models have 
to be matched. Therefore, turbulence models will be 
formulated independently for each of the mentioned 
areas. 

Highly acceleratedflow (region I). Many papers can 
be found in literature which deal with the lami- 
narization of an initially fully turbulent flow in a 
highly accelerated boundary layer flow. A summary 
is given in ref. [16]. 

Measurements of the Reynolds shear stress - pLu’v’ 
in a highly accelerated flow show that the turbulent 
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shear stress is approximately constant along a stream- 
line [16]. This experimental observation is in good 
agreement with the theory developed by Deissler [ 171, 
in which he examined the two-point equations for the 
turbulent stresses. After transforming the equations 
into von Mises coordinates (x, J/) and integrating the 
resulting equations, he found out that 

- 
u’u’(ti) = (u’u’(I(/))x=o (25) 

for II/ = const. and for sufficient high values of the 
acceleration parameter K. This shows that the Reyn- 
olds shear stress can be considered to be frozen at its 
initial values as it is convected along the streamlines 
(for more detailed information the reader is referred 
to ref. [17]). 

It is interesting to note that the turbulence model 
according to Deissler [ 171 involves no empirical func- 
tions or constants. The description of the initial dis- 
tribution of the Reynolds shear stress for x = 0 
suffices to calculate the axial development of the vel- 
ocity profiles in the highly accelerated boundary layer 
flow. Because the flow enters the cooled test section 
with a fully developed, turbulent velocity profile, the 
Reynolds shear stress, ( --pLu’~‘),V= “, can be cal- 
culated easily by applying the mixing length model 
originally developed by Prandtl [14, 151. 

Mixing length model (region III). In region III, the 
turbulent shear stress, -pLu’u’, can be modelled with 
the help of a modified mixing length theory developed 
by Moretti and Kays [ 131. The eddy viscosity is given 
in dimensionless quantities by 

(E;,),,, = 6*(Re,J3”p $ 
I I 

where the well-known mixing length formula of Niku- 
radse with the damping factor, according to van 
Driest 

T= [0.14-o.o*(+-)l 

-O.O6(l-&~](l-ed’“‘) (27) 

was used in equation (26). The damping function A+ 
is evidently determined by viscous stability con- 
siderations. A favorable pressure gradient (accel- 
eration) results in an increasing thickness, while an 
adverse pressure gradient has the opposite effect. 
Moffat and Kays [I81 attributed the failure in mod- 
elling A+ correctly as the main reason for the bad 
repute of mixing length models in the past. 

Following the work of Moffat and Kays [18], A+ 
is modelled as 

dA+ Re, 
-= 

dP 
-$A: -A+) (28) 

The dimensionless pressure gradient P: is defined by 

(30) 

with the Reynolds number Re, based on the friction 
velocity 

&, = u,h = M,,, h 
J( > 

~ - 
PL “L’ 

(31) 
“L 

The constants a and C, appearing in equation (28), 
have the values 

Pz < 0: a = 37.2, c = 2000 

P: > 0: a = 20.59, C = 1000. (32) 

The function A,+ represents the values which A+ 
adopts under essentially equilibrium conditions. The 
influence of the pressure gradient on A,+, according 
to equation (29), was modelled from experimental 
data by Moffat and Kays [18]. 

In any case, under non-equilibrium conditions, it 
has been observed that the sublayer does not change 
instantaneously to its new equilibrium thickness. 
Therefore, the rate equation (28) was used to incor- 
porate relaxation of the turbulent boundary layer. 

Region II. I f  the turbulence model according to 
Deissler [17] would be valid throughout the whole 
axial region, a monotonously decreasing function for 
6* could be obtained (Fig. 4). Figure 4 shows that the 
acceleration parameter K, defined by equation (2), 
decreases sharply with growing values of 1. For P 2 8 
the parameter K falls short of 2 x 10m6, which is the 
critical value of K for which laminarization phenom- 
ena can be observed in the flow. On the other hand 
experiments reveal that the ice layer thickness 
decreases for 1 > .?,,, which can be attributed to the 
again increasing heat transfer from the fluid to the 
solid-liquid interface. The retransition of the lami- 
narized fluid flow to the turbulent state is caused by 
instabilities occurring in the laminar sublayer for 
.f  2 &,, because the stabilizing effect of the strongly 
negative pressure gradient is no longer present. This 

with the function A: 
FIG. 4. Wavy ice layer for Re,,, = 14500, B = 15 and 

Pr = 12.6. 
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retransition to a fully turbulent flow behaviour is quite 
similar to the transition phenomena of a laminar fluid 
flow to the turbulent state (for details see ref. [16]). 
Therefore, the eddy viscosity of region II can be 
described by the following expression : 

(E:),, = (E$), +[(E:),,, -(s,t,),J(l -e’-R’h’CI)(“-f,‘~) 

c, =3x104, I>.?,, (33) 

in analogy to the transition of a laminar flow to a fully 
turbulent flow [15]. Equation (33) adapts the eddy 
viscosity (s,t), for region I, given by equations (25) 
and (9) with that for region III, given by equation 
(26). 

In equation (33) 1,, is yet unknown. It might be 
possible to express 1,, as a function of Re,, and B, as 
it was done by Seki ef al. [I I], using their experimental 
data. This expression could be used directly in equa- 
tion (33). However, from a physical point of view it 
seems more ingenious to model the axial distance as 
A? = 1,, - &, , because this distance describes the 
region in which instabilities develop in the laminar 
sublayer. From measurements we obtained the fol- 
lowing expressions for A1 : 

AZ = 1.4x 10”Re,;3” B-l”. (34) 

In order to relate the eddy diffusivity of heat E$ 
which appears in the energy equation, to the eddy 
viscosity ~2, a formulation for the turbulent Prandtl 
number is required. In this study the turbulent Prandtl 
number concept according to Cebeci [ 141 was used 

pr 

’ 

= K 1 --exp(--y+/G) 

K,, 1 -exp (--y+/B+) (35) 

with the quantities 

K = 0.4, K,, = o.‘t‘t, A,+ = 25 

B+ = & ,$, ci(logp~)‘- ’ 

C, = 34.96, C2 = 28.79, C3 = 33.95, 

C, = 6.33, C5 = - 1.186. (36) 

4. NUMERICAL METHOD AND CALCULATION 

PROCEDURE 

The calculation procedure can be split up in several 
parts. First, an ice layer is calculated under the 
assumption that the turbulence model according to 
Deissler [ 171 is valid throughout the whole chill region. 
For this, an initial distribution of S*(g is needed. We 
used 

T=“= 
h 

y  [B,/(mf) 

-In (I+ B,/(mf))], 0 G f  Q 0.2 (38) 

as an assumption for the initial ice layer thickness. 

The variation of 6* given by equations (37) and (38), 
can be obtained as an approximation of 6* proposed 
by Lee and Zerkle [2] for a slug flow velocity profile. 

With the assumed distribution of 6*(f) and the 
turbulence model according to Deissler, equation 
(25), the velocity and temperature distribution in the 
liquid can be calculated from equations (18) to (20) in 
conjunction with the boundary conditions, equation 
(22). 

Solutions of the conservation equations were 
obtained with the help of an implicit finite-difference 
method, which is known in literature as the Keller- 
box method [14, 151. This method has several very 
desirable features that make it appropriate for the 
solution of all parabolic partial differential equations; 
one of which is that it allows highly non-uniform I 
and ~7 spacings by second-order accuracy. Because the 
box scheme is a common method for solving parabolic 
differential equations, only a brief outline is provided 
here [14]. First of all the parabolic differential equa- 
tion of order n is reduced to a system of n first-order 
equations. These equations were approximated by 
difference equations using central differences at each 
nodal point. The ensuing algebraic equations were 
linearized. This results in a linear system of equations, 
which show a block tridiagonal structure and can be 
solved easily [ 14, 151. 

After solving the conservation equations, a new 
distribution of s*(n) is calculated by inserting the 
yet known temperature gradient at the solid-liquid 
interface into equation (23). With the new distribution 
of S*(f), the conservation equations (18)-(20) are 
solved again, and so on. The iteration procedure 
described above was repeated until the deviation 
between two successive ice layers was within 

A6* = 16 *(i) -a*(i- I)1 < 0.01 (39) 

at every axial position. The iteration process con- 
verges rapidly. Only three to four iterations were 
necessary to get 6*(T) within the error bound given 
above. 

After calculating the variation of s*(n), which is a 
monotonously decreasing function of 17 (see Fig. 4), 
the variation of the acceleration parameter K can be 
predicted from equation (2). For K = 2 x 10m6 the 
axial position of &, is determined (Fig. 4). Finally, 
the transition point P,, is found from equation (34). 
With the knowledge of 1,, the distribution of the ice 
layer thickness in regions II and III can now be cal- 
culated with .the help of the turbulence models 
described in the preceding chapter. The iteration pro- 
cedure for obtaining the ice layer thickness in regions 
II and III is actually the same as that described above. 

The calculations were performed with the help of 
a strongly non-uniform grid in 2 and y’ directions. 
Numerical runs showed that approximately 80 grid 
points in j direction and nearly 200 points in axial 
direction guaranteed sufficient accuracy. The length 
of the chill region was L/h = 80. 

For higher values of the cooling parameter B, the 
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cross-sectional area increases sharply for 1 > Z,, and 
flow separation may occur in this region. Figure 3 
shows a ‘step transition’ ice formation for 
Re,,, = 39 000, Pr = 13.2 and 0, = 10.4. For this case, 
the FLARE approximation of Reyhner and Fliigge- 
Lotz [I91 was applied to represent small regions of 
separated flow. The use of boundary layer equations 
to represent separated flows presumes that the pres- 
sure gradient in normal direction and longitudinal 
diffusion are negligible in the regions of recirculation. 
Also, it must be assumed that the regions of recir- 
culation remain small as compared to the charac- 
teristic length of the problem. In the present case, the 
error introduced by applying the FLARE approxi- 
mation in the small recirculation regions can be 
neglected with good accuracy (for more detailed infor- 
mation, see Kwon et al. [20]). 

5. RESULTS AND DISCUSSION 

Figure 5 shows a ‘smooth transition’ ice formation 
for Re,,, = 20000, Pr = I3 and B = 16. For steady 
state conditions the experimental results are compared 
with the numerical analysis. It can be seen that the ice 
layer thickness increases sharply for low values of the 
axial coordinate, whereas it reaches a nearly constant 
thickness for larger values of 1. The axial position 
of the transition point is found to be approximately 
1,, = 16. For 2 > I,, the ice layer first decreases in 
thickness. After attaining minimum thickness, the ice 
layer grows gradually again with increasing axial 
coordinate and approaches a nearly constant thick- 
ness for 1>, 40. Figure 5 elucidates that the theoretical 
results are in good agreement with our experimental 
data. 

In Fig. 6 the development of the axial velocity pro- 
file is shown for the ice layer of Fig. 5. The axial 
velocity is scaled with the axial mean velocity at the 
entrance of the test section. It can be observed that 
the maximum velocity at the centreline of the channel 
increases for 2 < P,,, which is due to the acceleration 
of the fluid caused by the converging ice layers. In 
the diverging channel region, the maximum velocity 
decreases but no flow separation occurs. For larger 

40 00 

-1(. 
h 

-x 
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FIG. 5. ‘Smooth transition’ ice formation for Red,, = 20000, FIG. 7. Axial distribution of the Reynolds shear stress for 
B= 16andPr= 13. several streamlines. 

U - 

uo 

t 

O-l I 

0 05 lo 

Y -- 
6 

FIG. 6. Axial velocity distribution as a function of y/6 for 
various x/h. 

values of the axial coordinate, the centreline velocity 
increases slowly with growing values of P. 

Figure 7 shows the distribution of the Reynolds 
shear stress at several selected streamlines 
($ = const.) for the ice layer plotted in Fig. 5. It can 
be seen that u’v’ remains constant along a streamline 
for 1 < &,, which was presumed in equation (25). In 
the divergent channel region the Reynolds shear stress 
is strongly enhanced. For larger values of the axial 
coordinate u‘u’ takes nearly constant values as it is 
convected along a streamline. 
. Figure 8 shows the influence of an increasing wall 
cooling parameter B on the shape of the ice layer 
for various Reynolds numbers. It is obvious that an 
increasing wall cooling parameter B = k,/k,& results 
in a thicker ice layer for a given value of the Reynolds 
number. For Re,, = 20000 it can be observed that a 
smooth ice layer develops in the channel for B = 8. 
Increasing B leads to a ‘smooth transition’ ice for- 
mation (B = 12.5). I f  B is further increased 
(B = 22.5), the flow passage expands very sharply for 
Z > f,, and a ‘step transition’ ice structure is obtained. 
It is interesting to note that the distance Za between 
the entrance of the chill region and the point for which 
the ice layer reaches its maximum thickness seems to 
be only a function of the Reynolds number. This fact 
is elucidated by Fig. 8. Another interesting detail is 
the observation that the minimum thickness of the ice 
layers also seems to depend only on the Reynolds 
number and not on the cooling parameter B. 

Figure 9 elucidates the effect of a variation in Reyn- 

-pLu’v’ 
TT O’O’O r-----l 
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FIG. 8. Influence of the cooling parameter B on the shape of the ice layers. 

olds number for B = const. and a specified Prandtl 
number. It is obvious that an increasing Reynolds 
number results in a decreasing ice layer thickness. This 
can be attributed to the intensified heat transfer from 
the flowing liquid to the ice layer with growing Reyn- 
olds numbers. Increasing the Reynolds number for 
constant values of Pr and B, therefore, tends to sta- 
bilize the ice layer and suppresses the development of 
wavy ice layers. Further, it can be seen that an increas- 
ing value of the Reynolds number results in a decreas- 
ing value of 2,,. 

In the previous plots the scaling of the jj axis, as 
compared to the 2 axis, was extremely stretched. To 
give a more realistic impression of the geometric 

relations, Fig. 10 shows two ice layers with the jj axis 
less distorted. 

As can be seen from Figs. 4 to 10, the agreement 
between theory and experiment is quite good, except 
in the region where the ice layer reaches its minimum 
thickness. At this location the deviations between the 
numerical solution and the measurement are more 
pronounced. This fact can be attributed to the fol- 
lowing reasons : 

l I f  flow separation occurs for larger values of B, 
three-dimensional effects occur in the expansion 
region of the flow cross-section. 

l For larger values of the diffuser angle, the axial 
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FIG. 9. Effect of Reynolds number on the axial distribution of 6*. 
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FIG. 10. Ice layer thickness as a function of x/h. I. 

velocity profile can be asymmetric to the centreline of 
the channel, as it was observed by Nikuradse [21]. 

l The simple modified mixing length theory might 
not be able to model correctly the eddy viscosity in 
the recirculation region. 

Nevertheless, the presented numerical method is able 
to predict realistic variations of the ice layer thickness 
for a wide range of Reynolds numbers and cooling 
parameters B. 

6. CONCLUSIONS 

According to the experimental and theoretical 
results of the present investigation concerning the 
freezing of water flow between parallel plates with 
the occurrence of laminarization effects, the following 
major conclusions may be drawn : 

(I) A strong coupling exists between the nature of 
the flow and the shape of the solid-liquid interface. 
The development of wavy ice layers can be attributed 
to the flow laminarization in the entrance region of 
the parallel plate channel. 

(2) Increasing the Reynolds number for given 
values of B and Pr tends to stabilize the ice layer. 

(3) The transition point Zlr can be considered to 
depend solely on Re,+,,. 

(4) A simple method is presented for calculating 
the axial distribution of wavy ice layers with one wave 
for steady-state conditions. 
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